
Time to apply stuff…

Faculty of Mathematics and Physics
Charles University in Prague
31st September 2016

Lab 03 – Path-finding
a.k.a. Informed Graph Search

INFO

ACTIONS

https://github.com/kefik/MsPacMan-vs-Ghosts-AI

https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI

 Remembering Dijkstra’s alg?

 Roughly speaking…

 Nodes = {start}
 while (!nodes.empty) {
 Node = pick_shortest_path(nodes)
 if (Node == Target)
 return reconstruct_path(Node)
 Nodes = Nodes \ Node
 expand(Node, Nodes)
 }

3

 A* trick

 Roughly speaking…

 Nodes = {start}
 while (!nodes.empty) {
 Node = pick_the_most_promising(nodes)
 if (Node == Target) return

 reconstruct_path(Node)
 Nodes = Nodes \ Node
 expand(Node, Nodes)
 }

7

 A* heuristic function must be… ?
1. Admissible for correctness
▪ Do not over-estimate the path-cost

2. Consistent == Monotone (for efficiency)
▪ “triangle inequation”

 Blah! Let’s hack it!
 What if we impose additional COST to some nodes

or links?

 Let’s choose some “nodes” or “links” that we want to avoid
 B … BADDIES … nodes or links with extra cost
 EC(B) … EXTRA COST … sum of extra cost over the B set

 We then have two types of metrics for the path
 Len(p) … PATH LENGTH … real environment path length
 Cost(p) … PATH COST … Len(p) + EC(p)

 Thus we can run A* using those two metrics
 A*-Len(N,M) … outputs the shortest path between nodes N and M
 A*-Cost(N,M) … outputs the least costly path between nodes N and M

 What do A*-Len(N,M) and A*-Cost(N,M) look like?

 Let’s choose some “nodes” or “links” that we want to avoid
 B … BADDIES … nodes or links with extra cost
 EC(B) … EXTRA COST … sum of extra cost over the B set

 We then have two types of metrics for the path
 Len(p) … PATH LENGTH … real environment path length
 Cost(p) … PATH COST … Len(p) + EC(p)

 Thus we can run A* using those two metrics
 A*-Len(N,M) … outputs the shortest path between nodes N and M
 A*-Cost(N,M) … outputs the least costly path between nodes N and M

 What do A*-Len(N,M) and A*-Cost(N,M) look like?

1. A*-Len(N,M) != A*-Cost(N,M)
 A*-Len(N,M) path contains some B’ that are not on the path of A*-Cost(N,M)

⇒ We have found a detour that is shorter than EC(B’) !
 Cost(A*-Cost(N,M)) < Len(A*-Len(N,M)) + EC(A*-Len(N,M))

 Let’s choose some “nodes” or “links” that we want to avoid
 B … BADDIES … nodes or links with extra cost
 EC(B) … EXTRA COST … sum of extra cost over the B set

 We then have two types of metrics for the path
 Len(p) … PATH LENGTH … real environment path length
 Cost(p) … PATH COST … Len(p) + EC(p)

 Thus we can run A* using those two metrics
 A*-Len(N,M) … outputs the shortest path between nodes N and M
 A*-Cost(N,M) … outputs the least costly path between nodes N and M

 What do A*-Len(N,M) and A*-Cost(N,M) look like?

2. A*-Len(N,M) == A*-Cost(N,M)
 Both paths contains B’ subset of B

⇒ There is no other PATH(N,M), for which following would hold:
 Cost(PATH(N,M)) < Len(A*-Len(N,M)) + EC(A*-Len(N,M))
 Len(PATH(N,M)) + EC(PATH(N,M)) < Len(A*-Len(N,M)) + EC(B’)

⇒ All other paths that would go around B’ are longer than EC(B’) !

 Example map

 Start-node

 Target-node

 Shortest path

 Adversary we want to avoid

 Let’s rise the NODE cost … is it enough?

 No…

 Rise the NODE cost again… enough now?

 Here you go!
 Why was this path found?

 Adding important heuristic costs
 So, are we cheating or not?

 Separating three concerns
 Goal definition
▪ What do we try to achieve?
▪ ISearchGoal

 Search strategy
▪ How do we define search space and direct the search?
▪ ISearchStrategy

 Graph view
▪ How do our agent perceive the underlying graph?
▪ IGraphView

 1. See Pac-Man exercise E5
 https://github.com/kefik/MsPacMan-vs-Ghosts-AI

2. Implement informed A-Star search

 See InformedSearch.step()

3. Come up with a way to eat everything up in the shortest
time …
 Hint: greedy way, add new links until it becomes

Eulerian, than trigger the search for Eulerian path

 No deadline in here…

https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI

 Completely zip-up your project(s) folder
 WITHOUT the bin folder!

 Send it to:
 Jakub Gemrot

 gemrot@gamedev.cuni.cz

 Use subject:
 AI1 – 2016 – H03 – Path-Finding

 Every reported & confirmed bug (within the framework)

is for 1 credit!

mailto:gemrot@gamedev.cuni.cz

	Artificial Intelligence 1
	Today – Path-Finding (again)
	A* Algorithm�Dijkstra
	A* Algorithm�Dijkstra Example I
	A* Algorithm�Dijkstra Example II
	A* Algorithm�Dijkstra Example III
	A* Algorithm�Basics
	A* Algorithm�A* Example I
	A* Algorithm�A* Example II
	A* Algorithm�A* Example III
	A* Algorithm�Basics
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Generic design
	Homework 03�10 Points
	Submit your homework

