Faculty of Mathematics and Physics
Charles University in Prague
31°t September 2016

Time to apply stuff...

Artificial Intelligence 1

Lab 03 — Path-finding BT I T T e
a.k.a. Informed Graph Search




Today — Path-Finding (again)

HINI

INFO

ACTIONS

https://github.com/kefik/MsPacMan-vs-Ghosts-Al



https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI

A* Algorithm

Dijkstra

Remembering Dijkstra’s alg?
Roughly speaking...

Nodes = {start}
while (!'nodes.empty) {
Node = pick shortest path(nodes)
IT (Node == Target)
return reconstruct_ path(Node)
Nodes = Nodes \ Node
expand(Node, Nodes)

}



A* Algorithm

Dijkstra Example |




A* Algorithm

Dijkstra Example Il




A* Algorithm

Dijkstra Example IlI




A* Algorithm

Basics

A* trick
Roughly speaking...

Nodes = {start}
while (!'nodes.empty) {
Node = pick the most promising(nodes)
iIT (Node == Target) return
reconstruct path(Node)
Nodes = Nodes \ Node
expand(Node, Nodes)

}



A* Algorithm

A* Example |




A* Algorithm
A* Example Il




A* Algorithm
A* Example Il




A* Algorithm

Basics

A* heuristic function must be...?

Admissible for correctness
Do not over-estimate the path-cost

Consistent == Monotone (for efficiency)

“triangle inequation”

Blah! Let’s hack it!

What if we impose additional COST to some nodes
or links?



A* Algorithm

Juggling with node/link costs

Let’s choose some “nodes” or “links” that we want to avoid

B ... BADDIES ... nodes or links with extra cost
EC(B) ... EXTRACOST ... sum of extra cost over the B set
We then have two types of metrics for the path
Len(p) ...PATHLENGTH ... real environment path length
Cost(p) ... PATHCOST ..Len(p) + EC(p)
Thus we can run A* using those two metrics
A*-Len(N,M) ... outputs the shortest path between nodes N and M
A*-Cost(N,M) ... outputs the least costly path between nodes N and M

What do A*-Len(N,M) and A*-Cost(N,M) look like?



A* Algorithm

Juggling with node/link costs

Let’s choose some “nodes” or “links” that we want to avoid

B ... BADDIES ... nodes or links with extra cost
EC(B) ... EXTRACOST ... sum of extra cost over the B set
We then have two types of metrics for the path
Len(p) ...PATHLENGTH ... real environment path length
Cost(p) ... PATHCOST ..Len(p) + EC(p)
Thus we can run A* using those two metrics
A*-Len(N,M) ... outputs the shortest path between nodes N and M
A*-Cost(N,M) ... outputs the least costly path between nodes N and M

What do A*-Len(N, M) and A*-Cost(N,M) look like?

A*-Len(N,M) 1= A*-Cost(N,M)
A*-Len(N,M) path contains some B” that are not on the path of A*-Cost(N,M)

We have found a detour that is shorter than EC(B”) !
Cost(A*-Cost(N,M)) < Len(A*-Len(N,M)) + EC(A*-Len(N,M))



A* Algorithm

Juggling with node/link costs

Let’s choose some “nodes” or “links” that we want to avoid

B ... BADDIES ... nodes or links with extra cost
EC(B) ... EXTRA COST ... sum of extra cost over the B set
We then have two types of metrics for the path
Len(p) ...PATHLENGTH ... real environment path length
Cost(p) ... PATHCOST ..Len(p) + EC(p)
Thus we can run A* using those two metrics
A*-Len(N,M) ... outputs the shortest path between nodes N and M
A*-Cost(N,M) ... outputs the least costly path between nodes N and M

What do A*-Len(N,M) and A*-Cost(N,M) look like?

A*-Len(N,M) == A*-Cost(N,M)
Both paths contains B” subset of B

There is no other PATH(N , M), for which following would hold:
Cost(PATH(N,M)) < Len(A*-Len(N,M)) + EC(A*-Len(N,M))
Len(PATH(N,M)) + EC(PATH(N,M)) < Len(A*-Len(N,M)) + EC(B”)

All other paths that would go around B” are longer than EC(B”) !



A* Algorithm

Juggling with node/link costs

Example map




A* Algorithm

Juggling with node/link costs

Start-node




A* Algorithm

Juggling with node/link costs

Target-node




A* Algorithm

Juggling with node/link costs

Shortest path




A* Algorithm

Juggling with node/link costs

Adversary we want to avoid




A* Algorithm

Juggling with node/link costs

Let’s rise the NODE cost ... is it enough?




A* Algorithm

Juggling with node/link costs




A* Algorithm

Juggling with node/link costs

Rise the NODE cost again... enough now?




A* Algorithm

Juggling with node/link costs

Here you go!
Why was this path found?




A* Algorithm

Juggling with node/link costs

Adding important heuristic costs
So, are we cheating or not?

START O




A* Algorithm

Generic design

Separating three concerns

Goal definition

What do we try to achieve?
ISearchGoal

Search strategy

How do we define search space and direct the search?
ISearchStrategy

Graph view

How do our agent perceive the underlying graph?
IGraphView



Homework 03

10 Points

See Pac-Man exercise Exg
https://github.com/kefik/MsPacMan-vs-Ghosts-Al

Implement informed A-Star search
See InformedSearch.step()

Come up with a way to eat everything up in the shortest
time ...
Hint: greedy way, add new links until it becomes
Eulerian, than trigger the search for Eulerian path

No deadline in here...


https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI
https://github.com/kefik/MsPacMan-vs-Ghosts-AI

Submit your homework

Completely zip-up your project(s) folder
WITHOUT the bin folder!

Send it to:
Jakub Gemrot
gemrot@gamedev.cuni.cz

Use subject:
Al1- 2016 — Ho3 — Path-Finding

Every reported & confirmed bug (within the framework)
is for 1 credit!


mailto:gemrot@gamedev.cuni.cz

	Artificial Intelligence 1
	Today – Path-Finding (again)
	A* Algorithm�Dijkstra
	A* Algorithm�Dijkstra Example I
	A* Algorithm�Dijkstra Example II
	A* Algorithm�Dijkstra Example III
	A* Algorithm�Basics
	A* Algorithm�A* Example I
	A* Algorithm�A* Example II
	A* Algorithm�A* Example III
	A* Algorithm�Basics
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Juggling with node/link costs
	A* Algorithm�Generic design
	Homework 03�10 Points
	Submit your homework

